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Abstract

A granular medium can be treated as an equivalent continuum. Appropriate representative stresses can be derived
from the virtual work principle. However, the expression of virtual work is not unique and therefore may lead to dif-
ferent results of stress expressions in terms of discrete quantities—contact forces, contact moments, and branch vectors.
In this paper, we introduced a generalized expression of virtual work that includes the restriction of boundary condi-
tions. To show the advantages of the current expression, the virtual work expression is applied to derive expressions for
stress, couple stress, a higher-order stress, and the stress moment. A distinction is made between the average stress
within a granular volume and the representative stress that is conjugate with the representative strain of the volume.
The current work is compared with that of [International Journal of Solids and Structures 38 (2) (2001) 353–367],
and the current stress expressions are shown to satisfy three essential conditions of a stress measure.
� 2004 Published by Elsevier Ltd.
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1. Introduction

Stress at a material point is a continuum concept associated with infinitesimal regions. Because a gran-
ular material is highly heterogeneous, consisting of particles and voids, the stress field based on infinitesimal
regions is not only highly non-uniform but also discontinuous across the boundaries of solid particles and
voids. In order to preserve the notion of a continuum, we alter the viewing scale. Instead of an infinitesimal
region, the stress at a material point is now defined as the representative stress of a finite volume of material
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associated with the material point. The finite volume should contain a sufficient number of particles such
that the material is statistically homogeneous and that the stress defined in this manner is continuous in this
medium. The study and modeling of granular materials require, therefore, a means of determining the rep-
resentative stress of a finite volume through a homogenizing process, preferably in terms of the discrete
forces and moments between contacting particles within the volume. We develop two notions of stress: a
macro stress and an average stress, based on two different homogenization processes. The macro stress is
derived from the principle of energy balance, i.e. it is conjugate with the macro strain defined for the rep-
resentative volume. Because they are conjugate, the macro stress and macro strain can be used in a general-
ized continuum representation of a granular medium. The average stress is the volume-average of the local
stress within the representative volume. The average stress is not necessarily conjugate with the average
strain.

We treat a granular medium as a discrete system and use the virtual work principle to obtain definitions
of the macro and average Cauchy stress, couple stress, and higher-order stress. Virtual work has already
been used to derive stress expressions for granular materials. However, the results can differ due to hypoth-
eses of the particular virtual work expression, selection of reference points, and other assumptions used in
the process. For example, derivations can lead to an average stress that differs from that found by the direct
integration of stress within a region (Bardet and Vardoulakis, 2001). A virtual work approach can also lead
to a non-unique average that depends upon the selection of reference points assigned to individual particles
(Kuhn, 2003). Other derivations also exist for average stress, but subtle differences can arise in the treat-
ment of peripheral particles along a region�s boundary (Christoffersen et al., 1981; Rothenburg and
Selvadurai, 1981; Bagi, 1999; Kruyt, 2003). In this paper, we suggest a generalized virtual work expression
and discuss the effects of associated assumptions. We also show that the definition of an average stress may
depend upon the continuum description with which the discrete material is expected to comply. For exam-
ple, different micromorphic settings can involve different stress quantities and, perhaps, lead to different def-
initions of a particular stress quantity. It is imperative that consistent definitions of the macro and average
stress be resolved for small subregions of a granular media, since analytical studies and numerical simula-
tions are increasingly focusing on the localized behavior of these discrete systems.

We seek expressions of the macro and average stress quantities (stress, couple stress, and higher-order
stress) of a representative volume that properly account for the contact forces and contact moments among
particles. The expressions should satisfy three conditions:

(1) We must usually assign a reference material point to each particle and express the macro or average
stress in terms of the inter-particle forces and the relative vectors (branch vectors) that connect the ref-
erence points of adjacent particles. The expression of a macro or average stress quantity must not depend

upon the choice of these particle reference points.
(2) A stress quantity should be objective: two independent observers should measure the same stress after an

appropriate tensor transformation of the observed stress components. Because we consider only the stress
and not its rate, the observers can be stationary, although their frames may differ by a finite rotation
and translation (Truesdell and Noll, 1960, §17).

(3) The virtual work principle is a statement of equilibrium. Moment equilibrium necessarily involves the
first moment of force about a central point (or points). The expression of a macro or average stress quan-

tity must not depend upon the choice of the central point.

We restrict our study, however, to the following situations: we assume static conditions in which external
forces are applied at the boundaries, and we exclude body forces and body moments on the particles
themselves.

In Section 2 we introduce the essential notation and review the equilibrium condition for individual
grains. In Section 3, we suggest a generalized expression of virtual work and use the expression to derive
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equilibrium relationships among the external and internal contact forces. We then employ these equilibrium
relations to develop definitions for the macro stress quantities. We also derive average stress quantities in
the context of three continuum settings: a classical continuum, a Cosserat continuum, and a higher-order
continuum. We then determine whether the macro and average stress quantities satisfy the three conditions
that were prescribed above. Many of the derivation details are placed in Appendices A and B. Appendix C
evaluates the results of Bardet and Vardoulakis (2001) and shows that these results violate two of the three
conditions that were prescribed above.
2. Equilibrium equations of particles

A representative volume of granular material is a contiguous collection of particles (Fig. 1a). The particles
could be a sub-region of a larger particle assembly, or the representative volume could simply be a cluster of
particles that are meant to emulate the micro-scale discrete behavior within a macro-scale continuum set-
ting. The particles within a representative volume are either interior or peripheral, with the latter possibly
interacting with material outside the representative volume. Forces and moments, both applied and inter-
nal, are discrete: they are either associated with pairs of particles inside the representative volume (i.e., at
contacts) or with the externally applied forces on individual particles. The set V of internal contacts in-
cludes contacts between interior–interior particle pairs and between interior–peripheral pairs. Externally
applied forces include contact forces and moments within the set of external (boundary) contacts B of
peripheral particles as well as body forces and moments applied to interior and peripheral particles. We will
soon exclude, however, such body forces and body moments in our analysis. That is, only contact forces
and moments will be considered: contact forces and contact moments at the internal contacts V and at
the external contacts B. A volume V is associated with the representative volume, and this volume encom-
passes both interior and peripheral particles and voids, although several approaches could be used in
assigning peripheral void space to this volume. We refer to two unambiguous approaches to volume par-
titioning: the material cell partition of Bagi (1996) for particles of arbitrary shape, and the Dirichlet parti-
tion of Satake (2004) for circular or spherical particles.

The location of X 0
i is defined in a global coordinate system X. The stress at X 0

i is evaluated from an aux-
iliary representative volume associated with this point. For points within the representative volume, a rel-
ative, local coordinate system x is used whose origin is at the point X 0

i , such that
xi ¼ X i � X 0
i ð1Þ
The point X 0
i is usually at the centroid of the representative volume (Section 3.6).

A reference particle point xn with Cartesian coordinates xni is assigned to each nth particle in the relative
system x (Fig. 1b). These particle points will serve in two roles: (a) as points of constraint when virtual par-
ticle movements must conform to a continuum field, and (b) as the central points for applying the moment
equilibrium conditions for individual particles. We denote f nm

i and mnm
i as the interior contact force and

moment exerted on particle n by another particle ‘‘m’’; whereas, f nb
i and mnb

i will denote the force and mo-
ment at an external contact ‘‘b’’ of a peripheral particle n (Fig. 1b and c). For the moment, we use f n

i and mn
i

to denote the resultant external body force and body moment acting at the reference point xn of a particle n,
although these forces will soon be excluded. We exclude particle inertia, so that the static equilibrium of
particle n requires
f n
i þ

X
b2B

f nb
i þ

X
m2V

f nm
i ¼ 0;

mn
i þ

X
b2B

mnb
i þ eijkrnbj f

nb
k

� �
þ
X
m2V

mnm
i þ eijkrnmj f nm

k

� �
¼ 0

ð2Þ



Fig. 1. A representative volume and the notation for discrete quantities.
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The interior radial vector rnmj joins the particle reference point xn to the mth interior contact point (Fig. 1b);
whereas, the peripheral radial vector rnbi is from the particle reference point xn to the bth external contact
point (Fig. 1c). The permutation tensor eijk effects the cross product r · f of radial and force vectors. Each
summation in Eq. (2) is for the contacts of any single particle n. In the remainder of the paper, we assume
that the externally applied body force and body moment are zero for each particle: f n

i ¼ 0 and mn
i ¼ 0. The

particles in an assembly interact at their contacts and we must supplement Eqs. (2) with the equilibrium
constraints
f nm
i ¼ �f mn

i ; mnm
i ¼ �mmn

i ð3Þ
so that the internal contacts forces are self-equilibrating. We also note that the moment equilibrium of a
particle in Eq. (3) is taken about the reference point xn of that particle, although we will later shift these
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multiple reference points to a single point as a test of the Condition 3 of Section 1 (see Section 3.9 and
Appendix B).
3. Derivations of macro and average stress

3.1. Virtual work of the discrete system

Rather than introduce the principle of virtual work as a postulate of equilibrium, we use the principle as
an extension of the classical (strong) equilibrium equations (2), by multiplying each, nth equation by six
arbitrary coefficients duni and dxn

i and then summing over all particles:
dW d;1 ¼ 1

V

X
n

X
b2B

f nb
i þ

X
m2V

f nm
i

 !
duni þ

1

V

X
n

X
b2B

mnb
i þ eijkrnbj f

nb
k

� � 

þ
X
m2V

mnm
i þ eijkrnmj f nm

k

� �!
dxn

i ¼ 0 ð4Þ
noting that we have now removed the body forces f n
i and body moments mn

i . In this equilibrium equation,
each, nth particle undergoes its own arbitrary and possibly finite virtual displacement duni and virtual rota-
tion dxn

i at its reference point xn, and the outer summations are carried over all particles in the represen-
tative volume. The ‘‘discrete’’ virtual work dWd,1 must be zero for any values of the duni and dxn

i . In Eq. (4)
we have divided by the volume V to give the virtual work dWd,1 per unit volume.

The superscript ‘‘d’’ in dWd,1 refers to the virtual work of a discrete system. The superscript ‘‘1’’ desig-
nates the first of two virtual work expressions that will be discussed in the paper. Bardet and Vardoulakis
(2001) used the virtual work of Eq. (4) to derive an average stress for the discrete system. In Appendix C, we
show, however, that Eq. (4) leads to an average stress that violates Conditions 1 and 3 of Section 1. We
depart from Eq. (4) by introducing the supplementary independent virtual displacements dubi and dxb

i of
the boundary contact points themselves. Because of deformation and rotation of peripheral particles, these
boundary displacements may differ from the displacements duni and dxn

i of the peripheral particles� interior
reference points xn. The virtual work in Eq. (4) can now be written as
dW d;2 ¼ 1

V

X
n

X
b2B

f nb
i þ

X
m2V

f nm
i

 !
duni þ

1

V

X
n

X
b2B

mnb
i þ eijkrnbj f

nb
k

� �
þ
X
m2V

mnm
i þ eijkrnmj f nm

k

� � !
dxn

i

þ 1

V

X
b2B

f b
i � f b

i

� �
dubi þ

1

V

X
b2B

mb
i �mb

i

� �
dxb

i ¼ 0 ð5Þ
In the final two sums, we have replaced the notation f nb
i and mnb

i with the simpler f b
i and mb

i to represent the
external forces and moments, which are multiplied by the boundary displacements dubi and dxb

i . No work is
done by the final two sums, and the two work expressions dWd,1 and dWd,2 are equivalent. We will see, how-
ever, that the work dWd,2 leads to superior stress expressions. We refer to Eq. (5) as the generalized expres-
sion of virtual work, which is analogous to generalized variational statements that include their own
boundary restrictions.

We return briefly to the work dWd,1 in Eq. (4) can be separated into two parts: an external virtual work
dW d;1

E associated with the boundary displacements and an internal virtual work dW d;1
I associated with inter-

nal deformation, which we write as
dW d;1 ¼ dW d;1 � dW d;1 ¼ 0 ð6Þ
E I
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The external and internal virtual works per unit of volume are
dW d;1
E ¼ 1

V

X
n

X
b2B

f nb
i duni þ

1

V

X
n

X
b2B

mnb
i þ eijkrnbj f

nb
k

� �
dxn

i ð7Þ

dW d;1
I ¼ � 1

V

X
n

X
m2V

f nm
i duni �

1

V

X
n

X
m2V

mnm
i þ eijkrnmj f nm

k

� �
dxn

i ð8Þ
where the sums for each, nth particle are either for its external or its interior contacts, b 2 B and m 2 V,
respectively. Eq. (6) is a standard statement of equilibrium: for a deformable structure in equilibrium under
the action of a system of applied forces, the external virtual work due to an admissible virtual displacement
state is equal to the internal virtual work due to the same virtual displacements.

With Eqs. (7) and (8), internal deformation is permitted throughout some, but not all, of the represen-
tative volume. Here, an external force f nb

i moves and rotates with its peripheral particle about the particle�s
interior reference point xn, which implies that the peripheral particles are rigid between their interior refer-
ence points and their external contact points. Indeed, the term ‘‘external work’’ may not be entirely appro-
priate with Eq. (7), since dW d;1

E involves the products of external forces (f nb
i and mnb

i ) and internal
displacements (duni and dxn

i ).
Both issues are resolved by using the second virtual work dWd,2 of Eq. (5), which can also be separated

into external and internal parts:
dW d;2
E ¼ 1

V

X
b2B

f b
i du

b
i þ

1

V

X
b2B

mb
i dx

b
i ð9Þ

dW d;2
I ¼ � 1

V

X
n

X
m2V

f nm
i duni �

1

V

X
n

X
m2V

mnm
i þ eijkrnmj f nm

k

� �
dxn

i þ
1

V

X
b2B

f b
i dubi � duni
� �

þ 1

V

X
b2B

mb
i dxb

i � dxn
i

� �
� 1

V

X
b2B

eijkrnbj f
b
k dx

n
i ð10Þ
With these two expressions, the external work dW d;2
E is entirely associated with boundary displacements,

and the internal work dW d;2
I is entirely due to internal deformation of the grains. The internal work

dW d;2
I in Eq. (10) can also be arranged as
dW d;2
I ¼ � 1

V

X
n

X
m2V

f nm
i duni � eijkrnmj dxn

i

� �
þ mnm

i dxn
i

h i

þ 1

V

X
b2B

f b
i dubi � duni � eijkrnbj dx

n
i

� �� �
þ mb

i dxb
i � dxn

i

� �h i
ð11Þ
By examining each term in this alternative form, we see that the granular material can be conceptually trea-
ted as an assembly of rigid particles with compliant or sliding contacts. The displacement at a contact of nth
particle is produced by the translation and rotation of this particle by duni � eijkrnbj dx

n
i . The contact forces

generate internal work on the relative translations of the two rigid grains at their contact points, and, sim-
ilarly, the contact moments produce internal work on the relative rotations of the contacting rigid particles.
In the case of peripheral particles, the deformations due to the compliance of external contacts produce the
relative movements dubi � ðduni � eijkrnbj dx

n
i Þ and dxb

i � dxn
i . This deformation occurs within the peripheral

particles and thus contributes to the internal work of the representative volume. Therefore, the internal
work dW d;2

I is a better measure than dW d;1
I because it accounts for the work done throughout the entire rep-

resentative volume, both within its interior and within its peripheral particles.



C.S. Chang, M.R. Kuhn / International Journal of Solids and Structures 42 (2005) 3773–3793 3779
When separating virtual work into external and internal parts, the work expressions dWd,1 and dWd,2

have led to different values for the two parts. Some work that would be considered external in dWd,1 is in-
stead considered as internal in dWd,2, and vice versa. The work dWd,2 in Eq. (5), leads to different (and supe-
rior) stress expressions. Eq. (5) is developed in the body of the paper; whereas an analysis of Eq. (4) is
deferred to Appendix C.

3.2. Continuum field for the discrete particle system

Stress is a continuum concept, and to make a link between the discrete force system and its continuum
equivalent, we adopt the approach of Chang and Liao (1990), Chang and Gao (1996), and Bardet and
Vardoulakis (2001). We restrict the virtual displacement fields dui(x) and dxi(x) to a continuous virtual dis-
placement field dûiðxÞ and virtual rotation field dx̂iðxÞ. Instead of applying the usual linear displacement
field to an infinitesimal element, we approximate the displacement field of the representative volume (asso-
ciated with the material point X 0

i as shown in Fig. 1) with a polynomial series containing quadratic terms. A
linear field of particle rotations is also considered:
dûiðxÞ ¼ du0i þ du0ijxj þ
1

2
du0ijkxjxk

dx̂iðxÞ ¼ dx0
i þ dx0

ijxj
ð12Þ
The coordinates xi in Eq. (12) are measured relative to the point X 0
i , as in Eq. (1). The scalar coefficients du0i ,

du0ij, du
0
ijk, dx

0
i and dx0

ij fully describe the deformation of the representative volume. Thus, these scalar coef-
ficients are used as strain measures of the material point X 0

i . The conventional strain at the same material
point (associated with an infinitesimal element) is different from the strains du0ij. We note that the conven-
tional strain at a point is defined as the derivatives of dui(x) and dxi(x) at the point; whereas du0ij are char-
acteristic strains of the representative volume. To distinguish the two notions, the strain at a point within
the representative volume is called the local strain, and the scalar coefficients in Eq. (12) are called macro

strains. The macro strains may differ from the volume average of local strains within the representative vol-
ume. The second rank matrices du0ij and dx0

ij each have 9 elements, and the third rank matrix du0ijk has 27
elements. After considering symmetry with respect to indices jk, du0ijk has 18 terms.

To develop expressions for stress, couple stress, and higher-order stress, we will restrict the discrete vir-
tual displacements and rotations, duni , dx

n
i , du

b
i and dxb

i , to the continuous fields (12) applied at the particle
reference points xn and at the external contact points xb:
duni ¼ dûiðxnÞ; dxn
i ¼ dx̂iðxnÞ; dubi ¼ dûiðxbÞ; dxb

i ¼ dx̂iðxbÞ ð13Þ
That is, we will replace the many (perhaps thousands) of arbitrary virtual displacements duni , dx
n
i , du

b
i and

dxb
i with the 42 virtual macro strains du0i , du

0
ij, du

0
ijk, dx

0
i and dx0

ij of Eq. (12).

3.3. Equilibrium of the discrete force system

We now restrict the displacements duni , dx
n
i , du

b
i and dxb

i in Eqs. (9) and (10) to the continuum field
Eq. (12). In terms of the macro strains, the external work dW d;2

E of Eq. (9) is
dW d;2
E ¼ du0i

1

V

X
b2B

f b
i þ du0ij

1

V

X
b2B

f b
i x

b
j þ du0ijk

1

2V

X
b2B

f b
i x

b
j x

b
k þ dx0

i

1

V

X
b2B

mb
i þ dx0

ij

1

V

X
b2B

mb
i x

b
j ð14Þ
although the first sum is zero, due to equilibrium of the external contact forces f b
i . The internal work dW d;2

I

of Eq. (9) is
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dW d;2
I ¼ du0ij

1

V

X
c2V [B

f c
i l

c
j þ du0ijk

1

2V

X
c2V [B

f c
i J

c
jk � dx0

i

1

V

X
c2V [B

eijkf c
k l

c
j

þ dx0
ij

1

V

X
c2V [B

mc
i l

c
j þ eik‘f c

k J c
‘j � xc‘l

c
j

� �h i
ð15Þ
as derived in Appendix A. Eq. (15) regroups the sums in Eq. (10) by combining them over the full set of
interior and exterior contacts (c 2 V [ B). As such, the quantities lci , J

c
ij, f

c
i and mc

i depend upon whether
a contact ‘‘c’’ is interior or exterior:
lci ¼
xmi � xni ; c 2 V

xbi � xni ; c 2 B

�
; Jc

ij ¼
xmi x

m
j � xni x

n
j ; c 2 V

xbi x
b
j � xni x

n
j ; c 2 B

(
ð16Þ

f c
i ¼

f nm
i ¼ �f mn

i ; c 2 V

f b
i ¼ f nb

i ; c 2 B

�
; mc

i ¼
mnm

i ¼ �mmn
i ; c 2 V

mb
i ¼ mnb

i ; c 2 B

�
ð17Þ
For an interior contact, the branch vector lci connects the reference points xn and xm of the particle pair,
and the interior contact force and moment on particle n are simply denoted as f c

i and mc
i . For an exterior

contact, the branch vector lci connects the reference point of the peripheral particle with its boundary
contact point xbi , and the external contact force and moment are denoted as f c

i ¼ f b
i ¼ f nb

i

and mc
i ¼ mb

i ¼ mnb
i . Note that boundary forces are denoted as f b

i and mb
i in the external sums of

Eq. (14), but they are also included as interior forces f c
i and mc

i in Eq. (15). The position xc‘ is of the
contact point, xc‘ ¼ xn‘ þ rnm‘ ¼ xm‘ þ rmn‘ . The derivation of Eq. (15) is given in Appendix A. The terms
in Eq. (15) can also be rearranged into an alternative form that will be useful in examining the stress
definitions:
dW d;2
I ¼ du0ij þ eijkdx0

k

� � 1

V

X
c2V [B

f c
i l

c
j þ du0ijk þ eij‘dx0

‘k

� � 1

2V

X
c2V [B

f c
i J

c
jk

þ dx0
ij

1

V

X
c2V [B

mc
i l

c
j þ eik‘f c

k

1

2
Jc
‘j � xc‘l

c
j

� �� 	
ð18Þ
The interior and exterior virtual works must be equal for an arbitrary choice of the macro strains
du0ij; du

0
ijk; dx

0
i and dx0

ij, as in Eq. (6). The equivalence of dW d;2
E and dW d;2

I in Eqs. (14) and (15) leads to
the following equivalences among the force sums:
1

V

X
b2B

f b
i x

b
j ¼

1

V

X
c2V [B

f c
i l

c
j ð19Þ

1

V

X
b2B

f b
i x

b
j x

b
k ¼

1

V

X
c2V [B

f c
i J

c
jk ð20Þ

1

V

X
b2B

mb
i ¼ � 1

V

X
c2V [B

eijkf c
k l

c
j ð21Þ

1

V

X
b2B

mb
i x

b
j ¼

1

V

X
c2V [B

mc
i l

c
j þ eik‘f c

k J c
‘j � xc‘l

c
j

� �h i
ð22Þ
These sums will be used in constructing stress quantities in the following two sections.
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3.4. Macro stress

In this section, we consider the virtual work done due to the virtual macro strain of a representative vol-
ume. The macro stress is defined to be conjugate with the macro strain. However, the macro stress quan-
tities are not necessarily equal to their average stress counterparts, a distinction that is elaborated in Section
3.5, where we derive average stress quantities. To derive the macro stress quantities, we will consider two
forms of the internal virtual work per unit volume. The first form is
dW a
I ¼ r0

jidu
0
ij þ r0

jkidu
0
ijk þ T 0

i dx
0
i þ T 0

jidx
0
ij ð23Þ
where the superscript ‘‘a’’ denotes the first form; du0ij, du
0
ijk, dx

0
i and dx0

ij are the macro strains of Eq.
(12); and r0

ji, r
0
jki, T

0
i and T 0

ji are the stress measures of the representative volume: the macro stress, macro
higher-order stress, macro internal torque, and macro torque stress, respectively. Unlike the discrete
work dW d;2

I in Eq. (15), the work dW a
I is for an equivalent continuum that approximates the discrete sys-

tem. The correspondence of terms in Eqs. (15) and (23) implies the following definitions of the macro
stresses:
r0
ji ¼

1

V

X
b2B

f b
i x

b
j ¼

1

V

X
c2V [B

f c
i l

c
j ð24Þ

r0
jki ¼

1

2V

X
b2B

f b
i x

b
j x

b
k ¼

1

2V

X
c2V [B

f c
i J

c
jk ð25Þ

T 0
i ¼

1

V

X
b2B

mb
i ¼ � 1

V

X
c2V [B

eijkf c
k l

c
j ð26Þ

T 0
ji ¼

1

V

X
b2B

mb
i x

b
j ¼

1

V

X
c2V [B

mc
i l

c
j þ eik‘f c

k J c
‘j � xc‘l

c
j

� �h i
ð27Þ
in which we have used the equivalences among internal and external sums given in Eqs. (19)–(22).
Eq. (18) suggests a second, ‘‘b’’, form of internal virtual work of the equivalent continuum:
dW b
I ¼ r0

ji du0ij þ eijkdx0
k

� �
þ r0

jki du0ijk þ eij‘dx0
‘k

� �
þ l0

jidx
0
ij ð28Þ
In this form, the macro strain measure du0ij þ eijkdx0
k is analogous to the micropolar strain of a Cosserat

continuum, and l0
ji is the macro couple stress. The term du0ijk þ eij‘dx0

‘k is not encountered in standard
micropolar theory, but it can be regarded as a higher-order macro strain. The macro torque stress T 0

ji in
Eq. (23) is related to the macro couple stress and higher-order stress by
T 0
ji ¼ l0

ji þ ek‘ir0
‘jk ð29Þ
The internal macro torque, T 0
k ¼ eijkr0

ji, is the anti-symmetric part of stress, which does not produce work in
a classical continuum. The correspondence of terms in Eqs. (18) and (28) implies the following definition of
the macro couple stress:
l0
ji ¼

1

V

X
b2B

mb
i x

b
j �

1

2
eik‘f b

k x
b
‘x

b
j

� �
¼ 1

V

X
c2V [B

mc
i l

c
j þ eik‘f c

k

1

2
Jc
‘j � xc‘l

c
j

� �� 	
ð30Þ
in which we have also applied Eqs. (20) and (22) to derive the internal and external sums. The macro stres-
ses r0

ji and r0
jki derived from the ‘‘b’’ form in Eq. (28) are the same as those in Eqs. (24) and (25).
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3.5. Average stress

In the previous section, we equated the internal work of the representative volume with the product of
macro stress and macro strain, which led to the expressions of macro stresses in Eqs. (24)–(27) and (30). In
deriving the macro stresses, we considered representative volume as discrete particles with compliant con-
tacts. Local stresses were not explicitly used within the representative volume; we instead derived the inter-
nal work done by the contact forces and moments within the volume. We now consider the representative
volume as an equivalent continuum. The internal work is generated by the local stresses at points within the
representative volume and we then integrate these local stresses throughout the representative volume to
find expressions of average stress within the volume. The internal work of the representative volume is then
determined by integrating the work at points within the volume. The specific expression of internal work at
a point within the representative volume depends upon the type of continuum assumed for the material.
The simplest form of internal work is the product rjidui,j for a classical continuum, but the work is more
complex for micropolar continua. We consider the following three continua, having different forms of inter-
nal work.

(a) Continuum A—Classical continuum
dW A
I ¼ 1

V

Z
V
rjidui;j dV ð31Þ
(b) Continuum B—Micropolar Cosserat continuum
dW B
I ¼ 1

V

Z
V

rji dui;j þ eijkdxk

� �
þ ljidxi;j


 �
dV ð32Þ
(c) Continuum C—Higher-order Cosserat continuum
dW C
I ¼ 1

V

Z
V

rji dui;j þ eijkdxk

� �
þ rjki dui;jk þ eij‘dx‘;k

� �
þ ljidxi;j


 �
dV ð33Þ
where rji, rjki, and lji are local stresses measured at points within the representative volume. In what fol-
lows, we will use these three equations to derive the average stresses �rji, �lji, and �rjki over the representative
volume V.
3.5.1. Average stress in a classical continuum (Continuum A)

With the work dW A
I of Continuum A in Eq. (31), we restrict the virtual displacements to the fields dûi

and dx̂i given in Eqs. (12) and (13). For a classical continuum (Continuum A), the internal virtual work
under the restricted displacements is
dW A
I ¼ 1

V

Z
V
rjidui;j dV ¼ du0ij

1

V

Z
V
rji dV þ du0ijk

1

V

Z
V
rjixk dV ð34Þ
noting that the coefficients du0ijk are symmetric in the final indices jk. We define the volume average stress �rA
ji

and stress moment �R
A

kji as
�rA
ji ¼

1

V

Z
V
rji dV ; �R

A

kji ¼
1

V

Z
V
rjixk dV ð35Þ
The internal work dW A
I in Eq. (34) must equal the work dW d;2

I in Eq. (15) for an arbitrary choice of the 48
macro strains du0ij, du

0
ijk, dx

0
i and dx0

ij. This equivalence and the four equilibrium Eqs. (19)–(22) imply the
following average stress quantities for a classical continuum:
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�rA
ji ¼

1

V

X
b2B

f b
i x

b
j ¼

1

V

X
c2V [B

f c
i l

c
j ð36Þ

�R
A

kji ¼
1

2V

X
b2B

f b
i x

b
j x

b
k ¼

1

2V

X
c2V [B

f c
i J

c
jk ð37Þ
provided that
1

V

X
b2B

mb
i ¼ � 1

V

X
b2B[V

eijkf c
k l

c
j ¼ 0 ð38Þ

1

V

X
b2B

mb
i x

b
j ¼

1

V

X
b2B[V

mc
i l

c
j þ eik‘f c

k J c
‘j � xc‘l

c
j

� �h i
¼ 0 ð39Þ
Because the sums in Eqs. (24) and (36) coincide, the macro stress and the average Cauchy stress are equal:
r0
ji ¼ �rA

ji . A similar comparison of Eqs. (25) and (37) shows that the macro higher-order stress is equal to the
average stress moment, r0

kji ¼ �R
A

kji, and that both stresses are symmetric in the initial indices kj. Eq. (34)
reveals that the internal work of the representative volume is �rjidu0ij þ �rjkidu0ijk. Thus, the representative vol-
ume behaves as a higher-order continuum even though each point within the representative volume is a
classical continuum. The relations in Eq. (38) imply that the average stress �rA

ji is symmetric for the classical
continuum. Equations (38) and (39) also imply that contact moments mc

i are disallowed in a classical con-
tinuum setting, since the two equations must apply to an arbitrary choice of granular region. The contact
moments mi do not contribute work in a classical continuum.
3.5.2. Average stress in a Cosserat continuum (Continuum B)

We now restrict the virtual work dW B
I of a Cosserat continuum (Eq. (32)) to the displacement fields dûi

and dx̂i in Eqs. (12) and (13). We will equate this continuum work with the internal work dW d;2
I of the dis-

crete system in Eq. (18). For the Cosserat continuum (Continuum B), the virtual work is
dW B
I ¼ 1

V

Z
V

rji dûi;j þ eijkdx̂k

� �
þ ljidx̂i;j


 �
dV

¼ du0ij þ eijkdx0
k

� � 1

V

Z
V
rji dV þ du0ijk þ eij‘dx0

‘k

� � 1

V

Z
V
RðkjÞi dV þ dx0

ij

1

V

�
Z
V

lji þ eik‘R½j‘�k
� �

dV ð40Þ
where the micro-scale stress moment Rkji is the product rjixk, and the enclosures ( Æ ) and [ Æ ] refer to sym-
metric and skew-symmetric parts, respectively. The terms in Eq. (40) have been arranged to coincide with
those in Eq. (18). The virtual works dW B

I and dW d;2
I in Eqs. (40) and (18) must be equal for arbitrary values

of the coefficients du0ij; du
0
ijk; dx

0
i and dx0

ij. This equivalence implies that the average Cauchy stress for a
Cosserat continuum, �rB

ji, is equal to that of a classical continuum �rA
ji and to the macro stress r0

ji, or
r0
ji ¼ �rA

ji ¼ �rB
ji, although the average stress �rA

ji must be symmetric. The equivalence of the

ðdu0ijk þ eij‘dx0
‘kÞ terms in Eqs. (18) and (40) implies that the symmetric part of the average stress moment,

�R
B

ðkjÞi is
�R
B

ðkjÞi ¼
1

2V

X
b2B

f b
i x

b
j x

b
k ¼

1

2V

X
c2V [B

f c
i J

c
jk ð41Þ
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and the equivalence of the final terms in Eqs. (40) and (18) implies that
�lB
ji þ eik‘�R

B

½j‘�k ¼
1

V

X
b2B

mb
i x

b
j � eik‘

1

2
f b
k x

b
‘x

b
j

� �
¼ 1

V

X
c2V [B

mc
i l

c
j þ eik‘f c

k

1

2
Jc
‘j � xc‘l

c
j

� �� 	
ð42Þ
where the average couple stress �lB
ji and average stress moment �R

B

ijk are defined as
�lB
ji ¼

1

V

Z
V
lji dV ; �R

B

ijk ¼
1

V

Z
V
xirjk dV ð43Þ
We note that the average stress moment and couple stress, �R
B

ðkjÞi and �lB
ji, cannot be independently computed

from the contact forces and moments: only the combinations �R
B

ðkjÞi and �lB
ji þ eik‘�R

B

½j‘�k can be computed.

Bardet and Vardoulakis (2001) reached a similar conclusion.

The macro couple stress �lB
ji in Eq. (30) is not that same as the average couple stress, but instead
l0
ji ¼ �lB

ji þ eik‘�R
B

½j‘�k ð44Þ
That is, the average stress moment also contributes to the macro couple stress. Eq. (40) reveals that the
internal work of the representative volume resembles that of a higher-order micropolar continuum (Section
3.5.3) even though each point within the representative volume is a standard micropolar continuum.

3.5.3. Average stress in a higher-order continuum (Continuum C)

We proceed as in the previous section, restricting the virtual displacements of the higher-order Contin-
uum C (Eq. (33)) to the continuous fields in Eqs. (12) and (13):
dW C
I ¼ 1

V

Z
V

rji dûi;j þ eijkdx̂k

� �
þ rjki dûi;jk þ eij‘dx̂‘;k

� �
þ ljidx̂i;j


 �
dV

¼ du0ij þ eijkdx0
k

� � 1

V

Z
V
rji dV þ du0ijk þ eij‘dx0

‘k

� � 1

V

Z
V

RðkjÞi þ rðkjÞi
� �

dV

þ dx0
ij

1

V

Z
V

lji þ eik‘ r½‘j�k � R½‘j�k
� �� �

dV ð45Þ
By comparing the terms in Eqs. (18), (28) and (33) on a coefficient-by-coefficient basis, we again reach
the conclusion that the representative macro stress is equal to the average stress, r0

ji ¼ �rC
ji , with both stresses

given by the sums in Eq. (24). The macro higher-order stress r0
jki and macro couple stress l0

ji, however,
are equal to combinations of the average stress quantities: r0

jki ¼ �rC
ðkjÞi þ �R

C

ðkjÞi and l0
ji ¼ �lC

ji þ
eik‘ð�rC

½‘j�k þ �R
C

½‘j�kÞ.
The average Cauchy stress �rC

ji has an explicit definition in terms of contact forces and contact moments
(Eq. (24), noting that �rC

ji ¼ r0
ji). Because the couple stress, stress moment and higher-order stress

appear together in combined forms in Eq. (45), we can not independently determine the averages, �lC
ji ,

�R
C

kji, and �rC
kji.

3.6. Discussion

The average Cauchy stresses, �rA
ji , �r

B
ji, and �rC

ji , for the three continua are identical to each other and to
the macro stress r0

ji, which has a unique definition in terms of contact forces (Eq. (24)). Rothenburg and
Selvadurai (1981) derived the same expressions for the average stress: the external and internal sums in
Eq. (24) are the same as their Eqs. (2.4) and (3.5). The external sum for r0

ji in Eq. (24) is also the same
as that of Drescher and de Josselin de Jong (1972) and Christoffersen et al. (1981). The latter investigators
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also gave a similar definition using an internal sum, although they did not explicitly account for periph-
eral particles. Both parts of r0

ji in Eq. (24) are identical to the definitions of Bagi (1999) in her Eqs. (12)
and (15), and of Kruyt (2003) in his Eqs. (33) and (34). The average stress in Eq. (24) differs, however,
from that of Bardet and Vardoulakis (2001), who treated peripheral particles differently than in the cur-
rent work. Their expressions were derived from the virtual work dWd,1 of Eq. (4) instead of the work
dWd,2 of Eq. (5), and their results are investigated in Appendix C. Kruyt (2003) derived an expression
for the average couple stress �lji that differs from Eq. (42). His definition is an internal sum that only in-
cludes the products mc

i l
c
j (compare with the final sum in Eq. (42)). He had assumed a smoothness condi-

tion for rji at the micro-scale stress so that the force terms f c
i make no contribution to �lji, an assumption

not made in the current work.
The average stress �rA

ji is always symmetric in a classical continuum, but the average stresses in
Cosserat and higher-order continua (�rB

ji and �rC
ji) are, in general, asymmetric. In the absence of external

contact moments mb
i , however, these average stresses are also symmetric. This possible symmetry of the

average stress �rji contrasts with the conclusion of Bardet and Vardoulakis (2001), which is analyzed in
Appendix C.

We now consider the three conditions that were prescribed in Section 1 and whether the various stress
quantities satisfy these conditions. The first condition is satisfied by all of the macro and average stress
quantities derived in Sections 3.3 and 3.4: each stress quantity is independent of the choice of the internal
reference points xn assigned to the particles. These stress quantities are constructed from the contact sums
in Eqs. (24)–(27), which are all independent of the choice of xn. This result is most apparent in the external
sums, which only depend upon the locations xbi of the external contacts and not upon the internal reference
points. This characteristic is not shared by the contact sums that would be derived from the alternative
work expression dWd,1 of Eq. (3) (see Appendix C).

As for the Condition 2 of objectivity, all of the stress quantities transform appropriately with a finite ob-
server rotation, since the sums from which they are constructed transform as tensors upon a rotation of the
coordinate basis vectors (i.e., the sums in Eqs. (19)–(22)). The coordinates xi in these sums are relative vectors,
xi ¼ X i � X 0

i , and are also unchanged by an observer translation. The stress quantities, which are constructed
from these sums, are therefore, objective. We note, however, that the average stresses �lji, �rjki, and �Rjki depend
upon the region selected as the representative volume. Condition 3 is investigated in the next section.
3.7. Changing the central point of moment equilibrium

We now determine whether the various averaged stress quantities satisfy Condition 3, which requires
that a stress quantity derived from the virtual work principle should not depend upon the central point that
is chosen for moment equilibrium. We will reformulate the virtual work expressions of Section 3.1, using
the single, common central point X 0

i for moment equilibrium instead of the multiple reference points, xni .
Our purpose is to demonstrate that the stress quantities in Sections 3.3 and 3.4 are independent of the
choice of the central point and, hence, satisfy Condition 3. As before, we allow virtual deformations within
peripheral particles by including the virtual displacements dubi and dxb

i of the boundary contact points
b 2 B. The moment equilibrium Eq. (2)2 is now replaced with
mn
i þ

X
b2B

mnb
i þ eijkxnbj f

nb
k

� �
þ
X
m2V

mnm
i þ eijkxnmj f nm

k

� �
¼ 0 ð46Þ
for each, nth particle. The position vector xnmi replaces the radial vector rnmi in Eq. (2)2 and is measured from
the common central point X 0

i to the contact between particles n and m ; vector xnbi is measured from the
common central point to the external contact point b of particle n (Fig. 1b and c). Neglecting the body
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forces and moments, f n
i and mn

i , the principle of virtual work can again be formulated by multiplying the
sums in Eqs. (2)1 and (46) by arbitrary virtual displacements, duni and dxn

i :
dW d;2�alt ¼ 1

V

X
n

X
b2B

f nb
i þ

X
m2V

f nm
i

 !
duni þ

1

V

X
n

X
b2B

mnb
i þ eijkxnbj f

nb
k

� � 

þ
X
m2V

mnm
i þ eijkxnmj f nm

k

� �!
dxn

i þ
1

V

X
b2B

f b
i � f b

i

� �
dubi þ

1

V

X
b2B

mb
i � mb

i

� �
dxb

i ¼ 0 ð47Þ
This alternative ‘‘alt’’ virtual work replaces that in Eq. (5). The work dWd,2�alt is partitioned into the fol-
lowing external and internal parts:
dW d;2�alt
E ¼ 1

V

X
b2B

f b
i du

b
i þ

1

V

X
b2B

mb
i dx

b
i ð48Þ

dW d;2�alt
I ¼ � 1

V

X
n

X
m2V

f nm
i duni �

1

V

X
n

X
m2V

mnm
i þ eijkxnmj f nm

k

� �
dxn

i þ
1

V

X
b2B

f b
i dubi � duni
� �

þ 1

V

X
b2B

mb
i dxb

i � dxn
i

� �
� 1

V

X
b2B

eijkxnbj f
b
k dx

n
i ð49Þ
The external work dW d;2�alt
E in Eq. (48) is identical to dW d;2

E in Eq. (9), so that the same external work
expression, expressed in terms of macro strains, applies to both dW d;2�alt

E and dW d;2
E (see Eq. (14)). The inter-

nal work dW d;2�alt
I can also be expressed in terms of the macro strains du0i ; du0ij; du0ijk; dx0

i and dx0
ij, and the

resulting expression is identical to dW d;2
I in Eq. (15) (see Appendix B). That is,
dW d;2
E ¼ dW d;2�alt

E ; dW d;2
I ¼ dW d;2�alt

I ð50Þ

Therefore, the sums in Eqs. (19)–(22) are unaffected by shifting the central point for moment equilibrium,
and the sums satisfy Condition 3. Since all of the macro and average stress quantities in Sections 3.3 and 3.4
were constructed from these sums, they, too, will satisfy Condition 3. The average stress proposed by Bar-
det and Vardoulakis (2001) does not satisfy this condition, as shown in Appendix C.
4. Conclusion

In the paper, we have introduced an expression of generalized virtual work, which accounts for the vir-
tual work to deform the boundary of peripheral particles. We have shown that such peripheral deformation
must be considered, otherwise the resulting stress expressions will violate two essential requirements of a
stress measure.

We have made a distinction between macro stress and average stress, and we have derived expressions
for both stresses. Because the macro stress is conjugate with the macro strain, the macro stress would be
appropriate in approximating a discrete system as a continuum or in using representative particle clusters
to derive constitutive relationships between the macro-scale stress and strain. The average stress, however,
would be more useful in averaging the micro-scale stresses measured in physical or simulation
experiments.

We have shown that the macro and average Cauchy stresses are equal but that subtle differences arise in
the corresponding couple stresses and higher-order stresses. Moreover, different micro-scale continuum set-
tings (e.g., classical or Cosserat) can lead to different averages of the couples stress, higher-order stress, and
stress moment.
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Appendix A. Simplifying the internal virtual work expression

In this appendix, we express the internal work dW d;2
I of Eq. (10) in terms of the macro strains

du0ij; du0ijk; dx0
i and dx0

ij of the continuum fields dûi and dx̂i in Eq. (12). To simplify dW d;2
I , we split Eq.

(10) into several parts, express each part in terms of the continuum coefficients, and then reassemble the
parts. We first consider the two ‘‘dui’’ terms in Eq. (10):
dW d;2;du
I ¼ � 1

V

X
n

X
m2V

f nm
i duni þ

1

V

X
b2B

f b
i dubi � duni
� �

ðA:1Þ
By constraining displacements duni (at the particle reference points xn) and dubi (at the external contact
points) to the continuum field dûi in Eq. (12), the two terms in Eq. (A.1) become
dW d;2;du
I ¼ 1

V

X
c2V

f c
i xmj � xnj
� �

du0ij þ
1

2V

X
c2V

f c
i xmj x

m
k � xnj x

n
k

� �
du0ijk þ

1

V

X
c2B

f b
i xbj � xnj
� �

du0ij

þ 1

2V

X
c2V

f b
i xbj x

b
k � xnj x

n
k

� �
du0ijk ðA:2Þ
where we use the notation f c
i ¼ f nm

i ¼ �f mn
i and f b

i ¼ f nb
i . By combining summations over the interior and

exterior contacts, we obtain
dW d;2;du
I ¼ 1

V

X
c2V [B

f c
i l

c
jdu

0
ij þ

1

2V

X
c2V [B

f c
i J

c
jkdu

0
ijk ðA:3Þ
with the terms lci ; J
c
ij; f

c
i , and mc

i defined in Eqs. (16) and (17).
We now consider the three dxi (rotation) terms of Eq. (10):
dW d;2;dx
I ¼ � 1

V

X
n

X
m2V

mnm
i þ eijkrncj f

nm
k

� �
dxn

i þ
1

V

X
b2B

mb
i dxb

i � dxn
i

� �
� 1

V

X
b2B

eijkrnbj f
nb
k dxn

i ðA:4Þ
and constrain the rotations dxn
i and dxb

i to the continuum field dx̂i in Eq. (12),
dW d;2;dx
I ¼ � 1

V

X
n

X
m2V

mnm
i þ eijkrncj f

nm
k

� �
dx0

i �
1

V

X
b2B

eijkrnbj f
nb
k dx0

i

" #

þ � 1

V

X
n

X
m2V

mnm
i þ eijkrncj f

nm
k

� �
xn‘dx

0
i‘ þ

1

V

X
b2B

mb
i xb‘ � xn‘
� �

dx0
i‘ �

1

V

X
b2B

eijkrnbj f
nb
k xn‘dx

0
i‘

" #

ðA:5Þ

Because the internal contact forces are self-equilibrating (as in Eq. (3)), we can combine terms in the first
brackets as
dW d;2;dx;½1�
I ¼ � 1

V

X
n

X
m2V

mnm
i dx0

i �
1

V

X
c2V [B

eijkf c
k l

c
jdx

0
i ðA:6Þ
denoting this part with the superscript ‘‘[1]’’ and using the notations f c
k and lcj defined in Eqs. (16) and (17).

The first term in Eq. (A.6) is zero, since the internal contact moments are self-equilibrating, so that
dW d;2;dx;½1�
I ¼ � 1

V

X
c2V [B

eijkf c
k l

c
jdx

0
i ðA:7Þ
We now combine terms associated with the rotation gradient dx0
i‘ (i.e., terms in the second brackets ‘‘[2]’’ of

Eq. (A.5)),
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dW d;2;dx;½2�
I ¼ 1

V

X
c2V

mc
i xm‘ � xn‘
� �

dx0
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1

V

X
c2V

eijkf c
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n
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� �
dx0
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V

X
b2B

mb
i xb‘ � xn‘
� �

dx0
i‘

� 1

V

X
b2B

eijkrnbj f
b
k x

n
‘dx

0
i‘ ðA:8Þ
and after substituting lc‘, as defined in Eq. (16),
dW d;2;dx;½2�
I ¼ 1

V

X
c2V [B

mc
i l

c
‘dx

0
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1

V

X
c2V
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n
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� �
dx0
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V

X
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n
‘

� �
dx0

i‘ ðA:9Þ
The last two terms of Eq. (A.9) can be written in the form
1

V

X
c2V

eijkf c
k xcj � xmj
� �

xm‘ � xcj � xnj
� �

xn‘
� �

dx0
i‘ þ

1

V

X
b2B

eijkf b
k 0� xbj � xnj

� �
xn‘

� �
dx0

i‘ ðA:10Þ
which can be expanded to
1
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n
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dx0
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n
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X
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eijkf b
k 0� xnj x

n
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� �
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i‘ ðA:11Þ
We can add and subtract equivalent values in the last two terms,
1
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X
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n
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dx0
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V

X
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k xmj x

m
‘ � xnj x

n
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X
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n
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dx0

i‘ �
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X
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k xbj x

b
‘ � xnj x

n
‘

� �
dx0

i‘ ðA:12Þ
and combine the summation ranges,
1

V

X
c2V [B

eijkf c
k l

c
‘x

c
jdx

0
i‘ �

1

V

X
c2V [B

eijkf c
k J

c
j‘dx

0
i‘ ðA:13Þ
The total internal work dW d;2
I in Eq. (5) is the sum of the following parts: dW d;2;dx;½1�

I in Eq. (A.7), the first

term of dW d;2;dx;½2�
I in Eq. (A.9), and expression (A.13) for the final two terms of dW d;2;dx;½2�

I :
dW d;2
I ¼ 1

V

X
c2V [B

f c
i l

c
jdu

0
ij þ

1

2V

X
c2V [B

f c
i J

c
jkdu

0
ijk �

1

V

X
c2V [B

eijkf c
k l

c
jdx

0
i

þ 1
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X
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i l

c
‘ þ eijkf c

k l
c
‘x

c
j

� �
dx0

i‘ �
1

V

X
c2V [B

eijkf c
k J

c
j‘dx

0
i‘ ðA:14Þ
This result is shown in Eq. (15) of Section 3.3 and used in finding the relations among the contact sums in
Eqs. (19)–(22).
Appendix B. Internal virtual work with a single central point of moment equilibrium

Eq. (49) gives the virtual work dW d;2�alt
E that results from using a single central point in the moment equi-

librium equations of each particle. In this appendix, we constrain the displacements duni ; dxn
i ; dubi and dxb

i

to the continuum fields dûi and dx̂i of Eqs. (12) and (13), which are applied at the many particle reference
points xn.
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The first and third terms of Eq. (49) are identical to those of Eq. (10) and after introducing the contin-
uum variables du0ij and du0ijk, these two terms will yield the first and second terms in Eq. (15), as developed in
Appendix A. Eq. (49) becomes
dW d;2�alt
I ¼ 1

V

X
c2V [B

f c
i l

c
jdu

0
ij þ

1

2V

X
c2V [B

f c
i J

c
jkdu

0
ijk �

1

V

X
n

X
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i þ eijkxnmj f nm

k

� �
dx0

i

� 1
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X
n

X
m2V
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i þ eijkxnmj f nm

k

� �
xn‘dx

0
i‘ þ

1

V

X
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i xb‘ � xn‘
� �

dx0
i‘ �

1

V

X
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eijkxnbj f
nb
k dx0

i

� 1

V

X
b2B

eijkxnbj f
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k xn‘dx

0
i‘ ðB:1Þ
The third term in Eq. (B.1) is zero, since forces and moments at internal contacts are self-equilibrating (as in
Eq. (3)). The sixth term in Eq. (B.1) can also be expressed with the notation
� 1

V

X
b2B

eijkxbj f
b
k dx

0
i ðB:2Þ
Eq. (19) implies that (B.2) has the alternative form
� 1

V

X
b2B

eijkxbj f
b
k dx

0
i ¼ � 1

V

X
c2V [B

eijkf c
k l

c
jdx

0
i ðB:3Þ
Because the positions xnmj are at the contact points, whereas positions xnj are at the particle centers, the
fourth term in Eq. (B.1) can be rewritten with the internal contact set c 2 V:
� 1

V

X
n

X
m2V

mnm
i þ eijkxnmj f nm

k

� �
xn‘dx

0
i‘ ¼

1

V

X
c2V

mc
i l

c
‘ þ eijkf c

k x
c
jl

c
‘

� �
dx0

i‘ ðB:4Þ
where xci ¼ xnmi ¼ xmni for interior contacts, and f c
i , m

c
i , and lci are defined in Eqs. (16) and (17). This term can

be combined with the two remaining dx0
i‘ terms in Eq. (B.1):
1
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X
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c
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c
‘dx

0
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1
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X
b2B

eijkf nb
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� �
dx0
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¼ 1

V

X
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c
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k x
c
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c
‘

� �
dx0

i‘ �
1

V

X
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eijkf b
k x

b
j x

b
‘dx

0
i‘ ðB:5Þ
We can apply Eq. (20) to the last term in Eq. (B.5), replacing it as follows:
� 1

V

X
b2B

eijkf b
k x

b
j x

b
‘dx

0
i‘ ¼ � 1

V

X
c2V [B

eijkf c
k J

c
j‘dx

0
i‘ ðB:6Þ
Finally, we recombine the parts of dW d;2�alt
I in Eq. (B.1): the first two terms of Eq. (15) and Eqs. (B.3), (B.5)

and (B.6). The result is
dW d;2�alt
I ¼ 1

V

X
c2V [B

f c
i l

c
jdu

0
ij þ

1

2V

X
c2V [B

f c
i J

c
jkdu

0
ijk �

1

V

X
c2V [B

eijkf c
k l

c
jdx

0
i

þ 1
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X
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i l

c
j þ eijkf c

k l
c
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c
j
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1

V

X
c2V [B

eijkf c
k J

c
j‘dx

0
i‘ ðB:7Þ
which is identical to dW d;2
I in Eq. (15).
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Appendix C. Alternative stress definition

In Sections 3.4 and 3.5, we used the virtual work dWd,2 of Eq. (5) to derive definitions of average stress
quantities. In this section, we instead use the virtual work dWd,1 of Eq. (4), as in Bardet and Vardoulakis
(2001), and show that this approach leads to stress definitions that violate Conditions 1 and 3, as presented
in Section 1.

The external and internal virtual works associated with d Wd,1 are given in Eqs. (7) and (8), which we
repeat:
dW d;1
E ¼ 1

V

X
n

X
b2B

f nb
i duni þ

1

V

X
n

X
b2B

mnb
i þ eijkrnbj f

nb
k

� �
dxn

i ðC:1Þ

dW d;1
I ¼ � 1

V

X
n

X
m2V

f nm
i duni �

1

V

X
n

X
m2V

mnm
i þ eijkrnmj f nm

k

� �
dxn

i ðC:2Þ
In this alternative to Eqs. (9) and (10), deformation is not permitted for peripheral particles. Here, an
external force f nb

i moves and rotates with its particle about the particle�s interior reference point xn,
which implies that the peripheral particles are rigid between their interior reference points and their exter-
nal contact points. Indeed, the term ‘‘external work’’ many not be appropriate with Eq. (C.1), since dW d;1

E

involves the products of external forces (f nb
i and mnb

i ) and internal displacements (duni and dxn
i ). Both

issues were removed in Eq. (5) by introducing the independent movements dubi and dxb
i of the bound-

ary points. The external work done by the forces f nb
i in Eq. (9) differs from that in Eq. (C.1) by

the amounts f nb
i ðdubi � duni Þ, and the differences between the external work done by the moments mnb

i

in Eqs. (9) and (C.1) are mnb
i ðdxb

i � dxn
i Þ � eijkrnbj f

nb
k dxn

i . These external work differences are transferred
into the internal work of Eq. (10), since this work is produced by deformation within the peripheral
particles.

Restricting the virtual displacements and rotations to the continuum fields in Eqs. (12) and (13) gives the
following external virtual work:
dW d;1
E ¼ 1

V

X
b2B

f b
i du

0
i þ

1

V

X
b2B

f b
i x

n
jdu

0
ij þ

1

2V

X
b2B

f b
i x

n
j x

n
kdu

0
ijk þ

1

V

X
b2B

mb
i þ eijkrnbj f

b
k

� �
dx0

i

þ 1

V

X
b2B

mb
i x

n
j þ ei‘krnb‘ f

b
k x

n
j

� �
dx0

ij ðC:3Þ
where we now use the superscript notation f b
i and mb

i for the boundary forces (replacing f nb
i and mnb

i ). The
superscript ‘‘b’’ indicates an external contact point, whereas xni is the location of the (interior) reference
point xn of the peripheral particle that contains the contact b. Vector rnbj joins the reference point xn of par-
ticle n to the external contact point b. Because the external forces are in equilibrium,

P
f b
i ¼ 0, and the first

sum in Eq. (C.3) will, henceforth, be removed.
We now restrict the virtual displacements in dW d;1

I to the fields dûi and dx̂i of Eqs. (12) and (13), so that
Eq. (C.2) becomes
dW d;1
I ¼ � 1

V

X
n

X
m2V
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X
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X
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X
n

X
m2V
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n
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0
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� 1

V

X
n

X
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mnm
i þ ei‘krnm‘ f nm

k

� �
dx0

i þ xnjdx
0
ij

� �
ðC:4Þ
Because the internal contact forces are self-equilibrating (Eq. (3)), the first term in Eq. (C.4) is zero and the
second term can be simplified as
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� 1

V

X
n

X
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f nm
i xnjdu

0
ij ¼ � 1

V

X
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f nm
i xnj þ f mn

i xmj
� �

du0ij ¼
1

V

X
c2V

f c
i l

c
jdu

0
ij ðC:5Þ
where the contact force f c
i ¼ f nm

i ¼ �f mn
i and the branch vector lcj ¼ xmj � xnj . In this notation, f c

i is the con-
tact force exerted by particle m on particle n ; and lcj connects x

n
j to xmj . The internal contact moments are

also self-equilibrating, so the sum of products mnm
i dx0

i in Eq. (C.4) is also zero, and the equation can be
simplified as
dW d;1
I ¼ 1

V

X
c2V

f c
i l

c
jdu

0
ij þ

1

2V

X
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f c
i J

c
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0
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1
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X
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eijkf c
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c
jdx

0
i

þ 1

V

X
c2V
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i l

c
j þ ei‘kf c

k rmc‘ xmj � rnc‘ x
n
j

� �� �
dx0

ij ðC:6Þ
with the symmetric tensor Jc
jk ¼ xmj x

m
k � xnj x

n
k . The radial vector r

nc
j is measured from the reference point xn of

particle n to its contact c with neighbor m; radial vector rmcj is from the reference point xm of particle m to
the same contact point. The branch vector in Eq. (C.6) can also be expressed as lcj ¼ rncj � rmcj .

Eqs. (6), (C.3) and (C.6) imply the following equivalences among the force sums:
1
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X
b2B

f b
i x

n
j ¼

1

V

X
c2V
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i l

c
j ðC:7Þ

1
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X
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f b
i x

n
j x
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1

V

X
c2V

f c
i J

c
jk ðC:8Þ

1
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X
b2B
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i þ eijkrnbj f

b
k

� �
¼ � 1

V

X
c2V

eijkf c
k l

c
j ðC:9Þ

1

V

X
b2B

mb
i þ ei‘krnb‘ f

b
k

� �
xnj ¼

1

V

X
c2V

mc
i l

c
j þ ei‘kf c

k rmc‘ xmj � rnc‘ x
n
j

� �h i
ðC:10Þ
Bardet and Vardoulakis (2001) derived these same equations and used them to find expressions for the aver-
age stress in a representative volume. For example, Eq. (C.7) leads to the average stress
�rji ¼
1

V

X
b2B

f b
i x

n
j ¼

1

V

X
c2V

f c
i l

c
j ðC:11Þ
The difference between this definition and that in Eq. (36) lies in their summation ranges. In Eq. (C.11), the
summation on the right is limited to interior contacts, but the summation on the right of Eq. (36) is carried
over all contacts, both interior and exterior. Eq. (C.9) implies that the average stress may not be symmetric,
even in the absence of contact moments, since
eijk�rji ¼
1

V

X
b2B

mb
i þ eijkrnbj f

b
k

� �
¼ � 1

V

X
c2V

eijkf c
k l

c
j ðC:12Þ
which can be non-zero even when the moments mb
i are zero.

Eqs. (C.7)–(C.10) are a valid consequence of equilibrium, but we must also determine whether the sums
satisfy the three conditions prescribed in Section 1. In regard to Condition 1, all of the sums in Eqs. (C.7)–
(C.10) fail: none is independent of the reference points xn that are assigned to the peripheral particles (Fig.
1c). This shortcoming is evident in Eq. (C.9), since shifting a peripheral particle�s reference point will alter
its location xnj and the radial vector rnbj , which will change the sums on the left of Eqs. (C.7)–(C.10). For
example, shifting the reference point xn of a single peripheral particle will alter the stress anisotropy in
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Eq. (C.9). It might be reasoned that this shortcoming is a consequence of forcing the continuum restriction
of Eq. (12) at the discrete points xn. The shortcoming in the sums is more fundamental, however, particu-
larly in regard to Condition 3, as will be shown below. As for Condition 2, the sums in Eqs. (C.7)–(C.10) are
objective for the same reasons given in Section 3.5 for the sums in Eqs. (19)–(22). The third condition is
addressed in the following paragraphs.

Moment equilibrium is valid for any choice of a central point. In the first part of this appendix, moment
equilibrium has been applied with respect to a different central point for each particle (Eq. (2)), since these
central points coincide with the particle reference points xn. Another possible choice is a single, common
central point for all particles in the representative volume, as was done in Section 3.7. With this approach,
the moment equilibrium equations (2)2 are replaced with those in Eqs. (46), and the virtual work dWd,1 � alt

in Eq. (4) becomes
dW d;1�alt ¼ 1

V

X
n

X
b2B
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i þ

X
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i

 !
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mnb
i þ eijkxnbj f

nb
k

� � 

þ
X
m2V

mnm
i þ eijkxnmj f nm

k

� �!
dxn

i ¼ 0 ðC:13Þ
where the superscript ‘‘alt’’ distinguishes the virtual work dWd,1�alt from the work dWd,1 in Eq. (4). Neglect-
ing the contribution of body forces and moments, f n

i and mn
i , the new external and internal works are
dW d;1�alt
E ¼ 1
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i ðC:15Þ
Although the equilibrium equations (46) are as valid as Eqs. (2)2, the resulting external virtual work expres-
sions (C.1) and (C.14) are different, as are the internal work expressions (C.2) and (C.15). After restricting
the displacements and rotations to the continuum fields in Eqs. (12) and (13), the alternative external virtual
work is
dW d;1�alt
E ¼ 1
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b
k x

n
j

� �
dx0

ij ðC:16Þ
In this equation, vector xnj is measured from the common central point to the reference point xn of particle
n, since we have constrained the virtual displacements to coincide with the continuum field (12) at these
points. The vectors xnbj , however, are measured to the external contacts, as required for moment equilib-
rium. The fourth sum in Eq. (C.16) is zero, since the representative volume must be in (external) moment
equilibrium.

Because Eqs. (C.3) and (C.16) differ, they will imply different average stresses. To find the alteration of
stress, we also write the internal work (C.15) in terms of the continuum variables:
dW d;1�alt
I ¼ 1
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c
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c
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ij ðC:17Þ
where the xcj are measured to the interior contact points, and f c
i ¼ f nm

i ¼ �f mn
i . This internal work expres-

sion differs from that in Eq. (C.6). Comparing Eqs. (C.3) and (C.6) with Eqs. (C.16) and (C.17), we see that
shifting the central point for moment equilibrium will alter the stress quantities. In particular, the virtual
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rotation dx0
i does no work in dW d;1�alt

I , so that each sum in Eq. (C.9) is now zero, and the stress anisotropy
in Eq. (C.12) is zero. Moreover, the sums in Eq. (C.10) are now replaced with
1
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X
b2B

mb
i þ ei‘kxb‘f

b
k

� �
xnj ¼

1
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X
c2V
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i l

c
j þ ei‘kf c

k x
c
jl

c
‘

� �
ðC:18Þ
so that the average couple stress and stress moment are altered as well. In summary, stress formulations
derived from the work dWd,1, as with Bardet and Vardoulakis (2001), violate Conditions 1 and 3.
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